Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

COURSE PLAN

Academic Year 2019-20

Program:	B E – Civil Engineering
Semester :	5th
Course Code:	17CV53
Course Title:	APPLIED GEOTECHNICAL ENGINEERING
Credit / L-T-P:	4/ 4-0-0
Total Contact Hours:	50
Course Plan Author:	SHIVAPRASAD D G

Academic Evaluation and Monitoring Cell

Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23721477/23721315 www.Skit.org, Email: skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	4
4. Course Prerequisites	4
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	
1. Course Outcomes	
2. Course Applications	6
3. Mapping And Justification	6
4. Articulation Matrix	
5. Curricular Gap and Content	7
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	8
1. Course Coverage	8
2. Continuous Internal Assessment (CIA)	8
D1. TEACHING PLAN - 1	9
Module - 1	
Module – 2	
E1. CIA EXAM – 1	11
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	16
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	Civil Engineering	Program:	B.E
Semester:	5th	Academic Year:	2019-20
Course Title:	Appliied Geo-technical Engineering	Course Code:	17CV53
Credit / L-T-P:	4 / 4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	SHIVAPRASAD D G	Sign	Dt:
Checked By:	MOHAN K T	Sign	Dt:
CO Targets	CIA Target : 85%	SEE Target:	80 %

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng Hours	Concepts	Learning Levels
1	Objectives and Importance, Stages and Methods of exploration- Test pits, Borings, Geophysical methods, stabilization of boreholes, Sampling techniques, Undisturbed, disturbed and representative samples, Geophysical exploration and Bore hole log. Drainage and Dewatering methods estimation of depth of GWT (Hvorslev's method).		Characterisation of soil	L3
2	Introduction, Boussinesq's and Westergaard's theory - concentrated load, circular and rectangular load, equivalent point load method, pressure distribution diagrams and contact pressure, Newmark's chart. Foundation Settlement - Approximate method for stress distribution on a horizontal plane, Types of settlements and importance, Computation of immediate and consolidation		Analysis of stress in soil Analysis of foundation settlement	L4
3	settlement. Active, Passive and earth pressure at rest, Rankine's theory for cohesionless and cohesive soils, Coulomb's theory, Rebhann's and Culmann's graphical construction. Assumptions, infinite and finite slopes, factor of safety, use of Taylor's stability charts, Swedish slip circle method for C and C-φ (Method of slices) soils, Fellineous method for critical slip circle	10	Analysis of pressure in soil Stability analysis	L4
4	Types of foundations, determination of bearing capacity by Terzaghi's and BIS method (IS: 6403), Effect of water table and eccentricity, field methods - plate load test and SPT. Proportioning of shallow foundations- isolated and combined footings (only two columns)		Computation of bearing capacity	L4
5	Types of foundations, determination of bearing capacity by Terzaghi's and BIS method (IS: 6403), Effect of water table and eccentricity, field methods - plate load test and SPT. Proportioning of shallow foundations- isolated and combined footings (only two columns)		Strengthening of pile foundation	L4
-	Total		-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

	arch. Recent developments on the concepts – publications in journals, co		
Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Punmia B C, soil mechanics and Foundation Engineering, Laxmi	In	
	publications co., New Delhi	Library	
	Dr. K. R. Arora, Soil Mechanics and Foundation Engineering	In	
		Library	
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	Shashi K. Gulathi & Manoj Datta, Geo-technical Engineering-Phi Learning	In	
	-,Tata McGraw Hill publications	departm	
		ent	
	Prof. T.N. Ramamurthy and Prof. T.G. Sitharam, Geotechnical Engineering	In	
	PIOL T.N. Ramamurury and PIOL T.G. Sundram, Geolechnical Engineering		
		departm	
		ent	
	Concept Videos or Simulation for Understanding	-	-
	NPTEL	VTU	
		Website	
	Diginotes.vtu.ac.in	VTU	
		Website	
D	Software Tools for Design	-	-
Е	Recent Developments for Research	-	-
	•		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
•			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1			 Knowledge on Index properties and Engineering properties of soil 	4		L2

-			
-			

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms
ules				Level
1				
3				
3				
5				
-				
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

·		a CO per Concept.				,	
Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt Method	Level
		should be able to					
1	17CV53.1	Students are able to find the	-	Soil	Lecture	C.I.A	L3
		properties of soil by exploration of		characterisat			Apply
		soil for construction of structures		ion			
2	.2	Students are able to analyse the		Analysis of	Lecture	C.I.A	L4
		distribution of stress in soil under		stress in soil			Analyse
		loading Students are able to analyze the	05	Analysia	Lastura		
2	.3	Students are able to analyse the settlement of foundation under		Analysis of foundation	Lecture	C.I.A	L4
		loading in cohesive and cohesion-		settlement			Analyse
		less soil		Settlement			
3	CO4	Students are able to analyse lateral	05	Analysis of	Lecture	C.I.A	L4
	004	earth pressure in soil at rest	00	pressure in	Lootaro	0.1.7 (Analyse
				soil			,
3	CO5	Students are able to analyse the	05	Stability	Lecture	C.I.A	L4
	Ū.	factor of safety against failure of		analysis			Analyse
		earth slope					-
4	CO6	Students are able to evaluate	10	Computation	Lecture	C.I.A	L5
		bearing capacity of shallow		of bearing			Evaluate
		foundation by Terzaghis and B.I.S		capacity			
		method					
5	CO7	Students are able to analyse the		Strengthenin	Lecture	C.I.A	L4
		capacity and efficiency of single		g of pile			Analyse
		and group of piles in cohesive and		foundation			
		cohesion-less soil					
					Lasture		
					Lecture	Assignme nt	
						ΠL	

-	-	Total	50	-	-	-	L2-L4
---	---	-------	----	---	---	---	-------

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Ability to plan and execute geo-technical site investigation program for different	CO1	L3
	civil engineering projects		
2	Ability to draw stress disribution digram for a given load on soil	CO2	L4
3	Ability measure settlement beneath loaded footings on sand and clayey soil	CO3	L4
4	Compute lateral earth pressure distribution behind earth retaining structures	CO4	L4
5	Ability to estimate factor of safety against failure of earth slopes	CO5	L4
	Ability to determine bearing capacity of soil and achieve profiency in proportioning shallow isolated and combined footings for uniform bearing pressure	CO6	L5
7	Capability of estimating load carrying capacity of single and group of piles	CO7	L4

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod ules			Mapping Level	Justification for each CO-PO pair	Le\ el			
-				'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'				
	CO1	PO1		The students should be able to apply the fundamentals of engineering geology, earth sciences and soil mechanics to conduct subsoil investigations				
	CO1	PO4		The students should able to determine the bore hole spacing and analyse the subsoil investigation data to choose appropriate foundations for the structure				
	CO2	PO1		The students should apply the fundamentals of soil mechanics to solve complex geotechnical problems involving stresses under loaded areas.	L4			
	CO3	PO1		The students should apply the fundamentals of soil mechanics to solve complex geotechnical problems involving foundation settlement	L4			
	CO3	PO2		The students able to analyse the type of foundation settlement	L4			
	CO4	PO1		The students should apply the fundamentals of soil mechanics to solve complex geotechnical problems involving active and passive earth pressures				
	CO5	PO1		Students have the engineering knowledge on earth slopes	L4			
	CO5	PO2		Stability anaysis by using graphical methods	L4			
	CO6	PO1		The students should apply the fundamentals of soil mechanics and mathematics to compute the bearing capacity of soil and solve problems related to settlement				
	CO6	PO2		The students should analyse the bearing capacity of soil to arrive at a choice of foundation or to choose necessary ground improvement techniques				
	CO6	PO3		The students should apply the fundamentals of foundation engineering to design isolated and combined footings	L4			
	CO7	PO1		The students should be able to apply the fundamental of foundation engineering to solve complex problems related to pile foundations.	L5			
				·				

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

	-	Course Outcomes		pai	1, vv					1 Ot				CIII				_
Mod	CO.#														DC	DC	DC	Lev
ules	0.#	student should be able to						6		8		10	11	гО 12	_	-	г3 03	-
utes	470//504	Students are able to find the	1	2	3	4	5	0	7	0	9	10	11	12	01	02	03	
		properties of soil by exploration		-	-	3	-	-	-	-	-	-	-	-	-	-	-	L3
		of soil for construction of																
		structures																
		Students are able to analyse the	2															L4
		distribution of stress in soil under		-	-		-	-		-	-	-	-	-	-	-	-	∟4
		loading																
		Students are able to analyse the	2	3	-	_	-	-	_	_	_	_	_	_	-	_	_	L4
		settlement of foundation under		5														L 4
		loading in cohesive and																
		cohesion-less soil																
		Students are able to analyse	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	L4
		lateral earth pressure in soil																•
	17CV53.5	Students are able to analyse the	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	L4
		factor of safety against failure of																
		earth slope																
		Students are able to evaluate		3	3	-	-	-	-	-	-	-	-	-	-	-	-	L4
		bearing capacity of shallow																
		foundation by Terzaghis and B.I.S																
		method																
		Students are able to analyse the		-	-	-	-	-	-	-	-	-	-	-	-	-	-	L5
		capacity and efficiency of single																
		and group of piles in cohesive and cohesion-less soil																
	17CV53PC.		~ 4	4.0	•	• •												
	1/0053PC.	Average	2.4 2	1.2 8	0.4 2	0.4 2	-	-	-	-	-	-	-	-	-	-	-	-
			~	0	~	~		-										
-		Average attainment (1, 2, or 3)																
-												ons;						
		4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and																
		Society; 7.Environment and Su																ork;
		10.Communication; 11.Project N															earr	ning;
		S1.Software Engineering; S2.Data E	Base	e Mo	ana	gen	nen	nt; S	3.W	'eb l	Des	ign			-			-

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

_					
Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Ν	٧od	Gap Topic	Area	Actions Planned	Schedule	Resources	PO Mapping
ι	lles				Planned	Person	
	1						

1			
2			
2			
3			
3			
4			
4			
5			
5			

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.		No. of	f quest	ion in	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Soil exploration	10	2	1	-	1	1	2	CO1	L3
2	Stress in soils	10	2	-	-	1	1	2	CO2, CO3	L4,l4
3	Lateral earth pressure	10	-	2	-	1	1	2	CO4, CO5	L4,l4
4	Bearing capacity of shallow	10	-	2	-	1	1	2	CO6	L4
	foundation									
5	Pile foundation	10	-	-	4	1	1	2	CO7	L5
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod		Weightage in	СО	Levels
ules		Marks		
	CIA Exam – 1	15	CO1,CO2,CO3	L3,L4,L4
	CIA Exam – 2	15	CO4,CO5, CO6,	L4,L4,L4
	CIA Exam – 3	15	CO7	L5
	Assignment - 1	05	C01,C02,C03	L3,L4,L4
	Assignment - 2	05	CO4,CO5, CO6,	L4,L4,L4
	Assignment - 3	05	CO7	L5
	Seminar - 1			
	Seminar - 2			
	Seminar - 3			
	Other Activities – define – Slip test		CO1 to Co7	L2, L3, L4
	Other Activities – Mini Project	-	CO9, CO10	L2,L2
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Soil Exploration	Appr Time:	10 Hrs
а	Course Outcomes	со	Bloom
-	At the end of the topic the student should be able to	-	Level
1	Students are able to find the properties of soil by exploration of soil for construction of structures	CO1	L3
b	Course Schedule	_	
	Portion covered per hour	_	-
1	Introduction,Objectives and Importance	C01	L2
2	Stages and Methods of exploration- Test pits, Borings, Geophysical methods	C01	L2
3	stabilization of boreholes	C01	L2
4	Sampling techniques	C01	L2
5	Undisturbed, disturbed and representative samples	C01	L2
6	Geophysical exploration and Bore hole log	C01	L2
7	Drainage methods	C01	L2
8	Dewatering methods	C01	L2
9	estimation of depth of GWT (Hvorslev's method).	C01	L3
10	estimation of depth of GWT (Hvorslev's method).	C01	L3
10		001	
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Use to find soil properties	CO1	L2
2	Used to determine the depth of ground water table	CO1	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	List and explain various types of samplers	CO1	L2
2	Explain seismic refraction method of soil exploration with neat sketch	CO1	L2
3	What are the objectives of subsurface exploration?	CO1	L2
4	Describe with neat sketch wash boring technique to explore the soil?	CO1	L2
5	Explain with neat sketch electrical resistivity method of soil exploration?	CO1	L2
6	List out the methods of dewatering. Explain any two method of dewatering with neat sketch	CO1	L2
7	Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects?	CO1	L2
8	List the methods used for controlling ground water during excavation and explain the electro — osmosis method.	CO1	L2
9	Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m.	CO1	L3
10	A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom of the borehole to a distance of 580mm with length of sample recorded being 520mm. find the recovery ratio.		L3
е	Experiences	_	_
1			
2			
3			
4			

5

Module – 2

Title:	Stress in Soils	Appr Time:	7 Hrs
a	Course Outcomes	СО	Bloom
-	At the end of the topic the student should be able to	-	Level
1	Students are able to analyse the distribution of stress in soil under loading	CO3	L4
2	Students are able to analyse the settlement of foundation under loading in cohesive and cohesion-less soil	CO4	L3
b	Course Outcomes At the end of the topic the student should be able to Students are able to analyse the distribution of stress in soil under loading Students are able to analyse the settlement of foundation under loading in cohesive and cohesion-less soil Course Schedule No Portion covered per hour Stress in soil Introduction Boussinesq's and Westergaard's theory - concentrated load, circular load rectangular load, equivalent point load method pressure distribution diagrams and contact pressure Newmark's chart. Foundation Settlement Approximate method for stress distribution on a horizontal plane Types of settlements and importance Computation of immediate and consolidation settlement		-
lass No		-	-
11.		CO2	L2
12.	Boussinesq's and Westergaard's theory - concentrated load, circular load	CO2	L2
13.	rectangular load, equivalent point load method	CO2	L2
14.		CO2	L3
15.	Newmark's chart.	CO3	L2
16.	Foundation Settlement	CO3	L2
17.		CO3	L3
18.	Types of settlements and importance	CO3	L2
19.	Computation of immediate and consolidation settlement	CO3	L4
20.	Computation of immediate and consolidation settlement	CO3	L4
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
	Ability to draw stress disribution digram for a given load on soil	CO2	L3
	Ability measure settlement beneath loaded footings on sand and clayey soil	CO3	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	sustainability of these types of settlements and functional utility of the	CO2	L2
2		CO2	L2
3	used.		L2
4	ground surface is subjected to a concentrated load of 1000kN.		L1,L3
5	distributed load of 150kN/m2 . Calculate the vertical stress at depths of 3m, 6m, 9m and 12m. Also plot the variation of stress with depth.	CO2	L3
6	area along vertical symmetrical axis.	CO2	L2
7	the footing of rectangular shape of size B x L.	CO2	L2
8	5m respectively. If the foundation transmits contact pressure of 200kN/m2,	CO3	L3
9	A footing of rectangular shape 6m x 8m is uniformly loaded with 180kN/m2 at the ground level. Newmark's chart of influence factor 0.004 is used to find the stress at a certain depth. It that found that 24 elements of the chart are		L3

	covered by the loaded area. Determine the stress.		
10	A soft clay layer is 5m thick and lies under newly constructed building. The effective pressure due to overlying strata is 300kN/m and new construction increased the overburden by 120kN/m.If liquid limit is 80%, natural water content of the clay layer is 43% and G=2.70. Dry density of the clay is 18kN/m3.Compute the settlement.		L3,L4
e	Experiences	_	_
1			
2			
3			
4			
5			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C		,,	minute	S	
Cour	rse:	APPLIED GEOTECHNICAL ENGINEERING			
-	-	Note: Answer all questions, each carry equal marks. Module : 1, 2	Marks	CO	Level
1	а	List and explain various types of samplers	CO1	L2	07
	b	A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom of the borehole to a d istance of 580mm with length of sample recorded being 520mm. find the recovery ratio.		L3	08
2	а	Explain seismic refraction method of soil exploration with neat sketch	CO1	L2	07
	b	Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m.		L3	08
3	а	Explain the basis of construction of Newmark's chart and discuss how it is used.	CO2	L2,L4	07
	b	A footing of rectangular shape 6m x 8m is uniformly loaded with 180kN/m2 at the ground level. Newmark's chart of influence factor 0.004 is used to find the stress at a certain depth. It that found that 24 elements of the chart are covered by the loaded area. Determine the stress.		L4	08
4	а	Explain with sketches various types of settlements. Comment on the sustainability of these types of settlements and functional utility of the structure		L2	07
	b	A soft clay layer is 5m thick and lies under newly constructed building. The effective pressure due to overlying strata is 300kN/m and new construction increased the overburden by 120kN/m.If liquid limit is 80%, natural water content of the clay layer is 43% and G=2.70. Dry density of the clay is 18kN/m3.Compute the settlement.		L3	08

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Model	Assignmer	nt Quest	ons				
Crs Co				VII	Marks:	5	Time	e: 90	0 – 120 i	6	
Cours	ie:	APPLIED	GEOTECHNI	CAL ENGIN	IEERING	Modu	le : 1, 2				
Note:	Each	student t	to answer 2-3	assignmer	nts. Each as	signmer	nt carries e	qual marl	K.		
SNo	ι	JSN		Assig	nment Des	scriptior	า		Marks	CO	Level
1	1 1KT15CV053 List and explain various types of samplers						5	CO1	L2		
2	2 1KT16CV035 Explain seismic refraction method of soil exploration with neat					5	CO1	L2			

		sketch			
3	1KT16CV020	What are the objectives of subsurface exploration?	5	CO1	L2
4		Describe with neat sketch wash boring technique to explore the soil?	5	CO1	L2
5	1KT16CV028	Explain with neat sketch electrical resistivity method of soil exploration?	5	CO1	L2
6	1KT16CV038	List out the methods of dewatering. Explain any two method of dewatering with neat sketch	5	CO1	L2
7	1KT16CV039	Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects?	5	CO1	L2
8	1KT16CV042	List the methods used for controlling ground water during excavation and explain the electro — osmosis method.	5	CO1	L2
9	1KT16CV047	Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m.	5	CO1	L2
10	1KT16CV048	A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom of the borehole to a distance of 580mm with length of sample recorded being 520mm. find the recovery ratio.	5	CO1	L4
11	1KT17CV007	Explain with sketches various types of settlements. Comment on the sustainability of these types of settlements and functional utility of the structure	5	CO2	L2
12	1KT17CV008	List the components of settlement. Give expressions to calculate each one of them, clearly specifying what the notations stand for.	5	CO2	L2
13	1KT17CV010	Explain the basis of construction of Newmark's chart and discuss how it is used.	5	CO2	L2
14	1KT17CV012	Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface is subjected to a concentrated load of 1000kN.	5	CO2	L1,L3
15	1KT17CV011	A circular area on the ground surface 6m in diameter carries a uniformly distributed load of 150kN/m2. Calculate the vertical stress at depths of 3m, 6m, 9m and 12m. Also plot the variation of stress with depth.	5	CO2	L3
16	1KT17CV013	Derive an expression for vertical pressure under a uniformly loaded circular area along vertical symmetrical axis.	5	CO2	L2
17		Explain a 2V:1H approximate method to determine stress at a depth Z below the footing of rectangular shape of size B x L.	5	CO2	L2
18	1KT17CV017	A structure is supported by ring foundation of outer inner diameters 8m and 5m respectively. If the foundation transmits contact pressure of 200kN/m2, compute the stress 3m below the center of the foundation.	5	CO3	L3
19	1KT17CV019	A footing of rectangular shape 6m x 8m is uniformly loaded with 180kN/m2 at the ground level. Newmark's chart of influence factor 0.004 is used to find the stress at a certain depth. It that found that 24 elements of the chart are covered by the loaded area. Determine the stress.	5	CO3	L3
20	1KT17CV020	A soft clay layer is 5m thick and lies under newly constructed building. The effective pressure due to overlying strata is 300kN/m and new construction increased the overburden by 120kN/m.If liquid limit is 80%, natural water content of the clay layer is 43% and G=2.70. Dry density of the clay is	5	CO3	L3,L4

1KT17CV023 1KT17CV024 1KT17CV025 1KT17CV026 1KT18CV400 1KT18CV401 1KT18CV401 1KT18CV402	List and explain various types of samplers Explain seismic refraction method of soil exploration with neat sketch What are the objectives of subsurface exploration? Describe with neat sketch wash boring technique to explore the soil? Explain with neat sketch electrical resistivity method of soil exploration? List out the methods of dewatering. Explain any two method of dewatering with neat sketch Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects? List the methods used for controlling ground water during excavation and explain the electro — osmosis method. Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m. A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom	5 5 5 5 5 5 5 5 5 5	CO1 CO1 CO1 CO1 CO1 CO1 CO1 CO1 CO1 CO1	L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
1KT17CV023 1KT17CV024 1KT17CV025 1KT17CV026 1KT18CV400 1KT18CV401 1KT18CV401 1KT18CV402	Explain seismic refraction method of soil exploration with neat sketch What are the objectives of subsurface exploration? Describe with neat sketch wash boring technique to explore the soil? Explain with neat sketch electrical resistivity method of soil exploration? List out the methods of dewatering. Explain any two method of dewatering with neat sketch Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects? List the methods used for controlling ground water during excavation and explain the electro — osmosis method. Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m. A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom	5 5 5 5 5 5 5 5	CO1 CO1 CO1 CO1 CO1 CO1 CO1 CO1	L2 L2 L2 L2 L2 L2 L2 L2 L2
1KT17CV024 1KT17CV025 1KT17CV026 1KT18CV400 1KT18CV421 1KT18CV401 1KT18CV402	 sketch What are the objectives of subsurface exploration? Describe with neat sketch wash boring technique to explore the soil? Explain with neat sketch electrical resistivity method of soil exploration? List out the methods of dewatering. Explain any two method of dewatering with neat sketch Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects? List the methods used for controlling ground water during excavation and explain the electro — osmosis method. Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m. A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom 	5 5 5 5 5 5 5 5	CO1 CO1 CO1 CO1 CO1 CO1 CO1	L2 L2 L2 L2 L2 L2 L2 L2
1KT17CV025 1KT17CV026 1KT18CV400 1KT18CV421 1KT18CV401 1KT18CV402	 What are the objectives of subsurface exploration? Describe with neat sketch wash boring technique to explore the soil? Explain with neat sketch electrical resistivity method of soil exploration? List out the methods of dewatering. Explain any two method of dewatering with neat sketch Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects? List the methods used for controlling ground water during excavation and explain the electro — osmosis method. Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m. A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom 	5 5 5 5 5 5	CO1 CO1 CO1 CO1 CO1 CO1	L2 L2 L2 L2 L2 L2 L2
1KT17CV026 1KT18CV400 1KT18CV421 1KT18CV401 1KT18CV402	 the soil? Explain with neat sketch electrical resistivity method of soil exploration? List out the methods of dewatering. Explain any two method of dewatering with neat sketch Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects? List the methods used for controlling ground water during excavation and explain the electro — osmosis method. Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m. A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom 	5 5 5 5 5	CO1 CO1 CO1 CO1 CO1 CO1	L2 L2 L2 L2 L2 L2
1KT18CV400 1KT18CV421 1KT18CV401 1KT18CV402	 Explain with neat sketch electrical resistivity method of soil exploration? List out the methods of dewatering. Explain any two method of dewatering with neat sketch Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects? List the methods used for controlling ground water during excavation and explain the electro — osmosis method. Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m. A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom 	5 5 5 5	CO1 CO1 CO1 CO1	L2 L2 L2 L2
1KT18CV400 1KT18CV421 1KT18CV401 1KT18CV402	 exploration? List out the methods of dewatering. Explain any two method of dewatering with neat sketch Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects? List the methods used for controlling ground water during excavation and explain the electro — osmosis method. Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m. A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom 	5 5 5 5	CO1 CO1 CO1 CO1	L2 L2 L2 L2
1KT18CV421 1KT18CV401 1KT18CV402	of dewatering with neat sketch Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects? List the methods used for controlling ground water during excavation and explain the electro — osmosis method. Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m. A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom	5	CO1 CO1 CO1	L2 L2 L2
1KT18CV401 1KT18CV402	 boring for various civil engineering projects? List the methods used for controlling ground water during excavation and explain the electro — osmosis method. Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m. A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom 	5	CO1 CO1	L2 L2
1KT18CV402	 excavation and explain the electro — osmosis method. Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m. A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom 	5	CO1	L2
	the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m.A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom			
1KT18CV403	edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom	5	CO1	L4
	of the borehole to a distance of 580mm with length of sample recorded being 520mm. find the recovery ratio.			
1KT18CV422	Explain with sketches various types of settlements. Comment on the sustainability of these types of settlements and functional utility of the structure	5	CO2	L2
1KT18CV404	List the components of settlement. Give expressions to calculate each one of them, clearly specifying what the notations stand for.	5	CO2	L2
1KT17CV412	Explain the basis of construction of Newmark's chart and discuss how it is used.	5	CO2	L2
1KT18CV406	Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface is subjected to a concentrated load of 1000kN.	5	CO2	L1,L3
1KT18CV405	uniformly distributed load of 150kN/m2 . Calculate the vertical stress at depths of 3m, 6m, 9m and 12m. Also plot the variation	5	CO2	L3
1KT18CV407	Derive an expression for vertical pressure under a uniformly loaded circular area along vertical symmetrical axis.	5	CO2	L2
1KT18CV408		5	CO2	L2
1KT18CV409	A structure is supported by ring foundation of outer inner diameters 8m and 5m respectively. If the foundation transmits contact pressure of 200kN/m2, compute the stress 3m below the center of the foundation.	5	CO3	L3
1KT16CV055	with 180kN/m2 at the ground level. Newmark's chart of	5	CO3	L3
111111111111111111111111111111111111111	IKT18CV405 IKT18CV407 IKT18CV408 IKT18CV409	 IKT18CV406 Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface is subjected to a concentrated load of 1000kN. IKT18CV405 A circular area on the ground surface 6m in diameter carries a uniformly distributed load of 150kN/m2. Calculate the vertical stress at depths of 3m, 6m, 9m and 12m. Also plot the variation of stress with depth. IKT18CV407 Derive an expression for vertical pressure under a uniformly loaded circular area along vertical symmetrical axis. IKT18CV408 Explain a 2V:1H approximate method to determine stress at a depth Z below the footing of rectangular shape of size B x L. IKT18CV409 A structure is supported by ring foundation of outer inner diameters 8m and 5m respectively. If the foundation transmits contact pressure of 200kN/m2, compute the stress 3m below the center of the foundation. IKT16CV055 A footing of rectangular shape 6m x 8m is uniformly loaded with 180kN/m2 at the ground level. Newmark's chart of influence factor 0.004 is used to find the stress at a certain 	IKT18CV406Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface is subjected to a concentrated load of 1000kN.5IKT18CV405A circular area on the ground surface 6m in diameter carries a uniformly distributed load of 150kN/m2 . Calculate the vertical stress at depths of 3m, 6m, 9m and 12m. Also plot the variation of stress with depth.5IKT18CV407Derive an expression for vertical pressure under a uniformly loaded circular area along vertical symmetrical axis.5IKT18CV408Explain a 2V:1H approximate method to determine stress at a depth Z below the footing of rectangular shape of size B x L.5IKT18CV409A structure is supported by ring foundation of outer inner diameters 8m and 5m respectively. If the foundation transmits contact pressure of 200kN/m2, compute the stress 3m below the center of the foundation.5IKT16CV055A footing of rectangular shape 6m x 8m is uniformly loaded with 180kN/m2 at the ground level. Newmark's chart of influence factor 0.004 is used to find the stress at a certain depth. It that found that 24 elements of the chart are covered5	IKT18CV406Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface is subjected to a concentrated load of 1000kN.5CO2IKT18CV405A circular area on the ground surface 6m in diameter carries a uniformly distributed load of 150kN/m2. Calculate the vertical stress at depths of 3m, 6m, 9m and 12m. Also plot the variation of stress with depth.5CO2IKT18CV407Derive an expression for vertical pressure under a uniformly loaded circular area along vertical symmetrical axis.5CO2IKT18CV408Explain a 2V:1H approximate method to determine stress at a depth Z below the footing of rectangular shape of size B x L.5CO2IKT18CV409A structure is supported by ring foundation of outer inner diameters 8m and 5m respectively. If the foundation transmits contact pressure of 200kN/m2, compute the stress 3m below the center of the foundation.5CO3IKT16CV055A footing of rectangular shape 6m x 8m is uniformly loaded with 180kN/m2 at the ground level. Newmark's chart of influence factor 0.004 is used to find the stress at a certain5CO3

		building. The effective pressure due to overlying strata is 300kN/m and new construction increased the overburden by 120kN/m.If liquid limit is 80%, natural water content of the clay layer is 43% and G=2.70. Dry density of the clay is 18kN/m3.Compute the settlement.			
41	1KT16CV077	List and explain various types of samplers	5	CO1	L2
42		Explain seismic refraction method of soil exploration with neat sketch	5	CO1	L2
43	1KT16CV088	What are the objectives of subsurface exploration?	5	CO1	L2
44	1KT16CV094	Describe with neat sketch wash boring technique to explore the soil?	5	CO1	L2
45	1KT16CV098	Explain with neat sketch electrical resistivity method of soil exploration?	5	CO1	L2
46	1KT16CV102	List out the methods of dewatering. Explain any two method of dewatering with neat sketch	5	CO1	L2
47		Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects?	5	CO1	L2
48		List the methods used for controlling ground water during excavation and explain the electro — osmosis method.	5	CO1	L2
49	1KT17CV031	Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m.	5	CO1	L2
50	1KT17CV032	A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom of the borehole to a distance of 580mm with length of sample recorded being 520mm. find the recovery ratio.	5	CO1	L4
51	1KT17CV033	Explain with sketches various types of settlements. Comment on the sustainability of these types of settlements and functional utility of the structure	5	CO2	L2
52	1KT17CV034	List the components of settlement. Give expressions to calculate each one of them, clearly specifying what the notations stand for.	5	CO2	L2
53	1KT17CV035	Explain the basis of construction of Newmark's chart and discuss how it is used.	5	CO2	L2
54	1KT17CV036	Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface is subjected to a concentrated load of 1000kN.	5	CO2	L1,L3
55	1KT17CV037	A circular area on the ground surface 6m in diameter carries a uniformly distributed load of 150kN/m2 . Calculate the vertical stress at depths of 3m, 6m, 9m and 12m. Also plot the variation of stress with depth.	5	CO2	L3
56	1KT17CV038	Derive an expression for vertical pressure under a uniformly loaded circular area along vertical symmetrical axis.	5	CO2	L2
57		Explain a 2V:1H approximate method to determine stress at a depth Z below the footing of rectangular shape of size B x L.	5	CO2	L2
58		A structure is supported by ring foundation of outer inner diameters 8m and 5m respectively. If the foundation transmits contact pressure of 200kN/m2, compute the stress 3m below the center of the foundation.	5	CO3	L3
59	1KT17CV042	A footing of rectangular shape 6m x 8m is uniformly loaded with 180kN/m2 at the ground level. Newmark's chart of influence factor 0.004 is used to find the stress at a certain	5	CO3	L3

	depth. It that found that 24 elements of the chart are covered by the loaded area. Determine the stress.			
1KT17CV050	A soft clay layer is 5m thick and lies under newly constructed building. The effective pressure due to overlying strata is 300kN/m and new construction increased the overburden by 120kN/m.If liquid limit is 80%, natural water content of the clay layer is 43% and G=2.70. Dry density of the clay is 18kN/m3.Compute the settlement.	5	CO3	L3,L4
1KT17CV053	List and explain various types of samplers	5	CO1	L2
1KT17CV055	Explain seismic refraction method of soil exploration with neat sketch	5	CO1	L2
		5	CO1	L2
	the soil?	5	CO1	L2
	exploration?	5	CO1	L2
1KT18CV415	List out the methods of dewatering. Explain any two method of dewatering with neat sketch	5	CO1	L2
1KT18CV414	Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects?	5	CO1	L2
1KT18CV416	List the methods used for controlling ground water during excavation and explain the electro — osmosis method.	5	CO1	L2
1KT18CV417	Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m.	5	CO1	L2
1KT18CV418	A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom of the borehole to a distance of 580mm with length of sample recorded being 520mm. find the recovery ratio.	5	CO1	L4
1KT18CV419	Explain with sketches various types of settlements. Comment on the sustainability of these types of settlements and functional utility of the structure	5	CO2	L2
1KT18CV411	List the components of settlement. Give expressions to calculate each one of them, clearly specifying what the notations stand for.	5	CO2	L2
1KT18CV410	Explain the basis of construction of Newmark's chart and discuss how it is used.	5	CO2	L2
1KT18CV413	Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface is subjected to a concentrated load of 1000kN.	5	CO2	L1,L3
1KT18CV420	A circular area on the ground surface 6m in diameter carries a uniformly distributed load of 150kN/m2 . Calculate the vertical stress at depths of 3m, 6m, 9m and 12m. Also plot the variation of stress with depth.	5	CO2	L3
1KT18CV425	Derive an expression for vertical pressure under a uniformly loaded circular area along vertical symmetrical axis.	5	CO2	L2
	1KT17CV053 1KT17CV055 1KT18CV423 1KT18CV412 1KT18CV412 1KT18CV414 1KT18CV415 1KT18CV416 1KT18CV417 1KT18CV417 1KT18CV419 1KT18CV419 1KT18CV410 1KT18CV411 1KT18CV410	 by the loaded area. Determine the stress. 1KT17CV050 A soft clay layer is 5m thick and lies under newly constructed building. The effective pressure due to overlying strata is 300kN/m and new construction increased the overburden by 120kN/m/If liquid limit is 80%, natural water content of the clay layer is 43% and G-270. Dry density of the clay is 18kN/m3.Compute the settlement. 1KT17CV053 List and explain various types of samplers 1KT17CV055 Explain seismic refraction method of soil exploration with neat sketch 1KT18CV422 What are the objectives of subsurface exploration? 1KT18CV424 Explain with neat sketch electrical resistivity method of soil exploration? 1KT18CV424 Explain with neat sketch electrical resistivity method of dewatering with neat sketch 1KT18CV414 Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects? 1KT18CV414 List the methods used for controlling ground water during excavation and explain the elevel by Hvorstev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 15m. 1KT18CV418 A sampling tube has inner diameter of 70mm and cutting edge of 68mm, its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom of the borehole to a distance of 580mm with length of sample recorded being 520mm, find the recovery ratio. 1KT18CV413 Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface is subjected to a concentrated load of 100kN. 1KT18CV43 Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface 6m in diameter carries a unformly distributed load of 150kN/m2. Calculate the vertical stress of 40kN/m2 when ground surface 6m in diameter carries a unformly distributed load of	by the loaded area. Determine the stress. 1 1KT17CV050 A soft clay layer is 5m thick and lies under newly constructed building. The effective pressure due to overlying strata is 300kN/m and new construction increased the overburden by 120kN/m. If liquid limit is 80%, natural water content of the clay layer is 43% and G=270. Dry density of the clay is 18kN/m3.Compute the settlement. 5 1KT17CV053 List and explain various types of samplers 5 1KT17CV054 List and explain various types of samplers 5 1KT18CV423 What are the objectives of subsurface exploration? 5 1KT18CV424 Describe with neat sketch wash boring technique to explore the soil? 5 1KT18CV412 List out the methods of dewatering. Explain any two method of of exploration? 5 1KT18CV414 Indicate with neat sketches. selection of number and depth of boring for various civil engineering projects? 5 1KT18CV414 Indicate with neat sketches. selection of number and cutting excavation and explain the electro – osmosis method. 5 1KT18CV415 List the methods used for controlling ground water level is 30m. rise in water level after first day is 2.2m. second day 1.8m and on third day it is 1.5m. 5 1KT18CV418 A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area aratio, inside clear	by the loaded area. Determine the stress. Image: Construction of the stress of the stres

D2. TEACHING PLAN - 2

Module – 3

Title: Lateral Earth Pressure & Stability of Slopes

-	Course Outcomes	Time:	Discret
a	Course Outcomes	со	Bloom
-	At the end of the topic the student should be able to	-	Level
1	Analyse lateral earth pressure in soil at rest	CO4	L4
2	Analyse the factor of safety against failure of earth slope	CO5	L5
b	Course Schedule		
	o Portion covered per hour	-	-
1	Active, Passive and earth pressure at rest	C04	L2
2	Rankine's theory for cohesionless soil	C04	L2
3	Rankine's theory for cohesive soil	C04	L2
4	Coulomb's theory	C04	L2
5	Rebhann's and Culmann's graphical construction.	C04	L3,L4
6	Assumptions,	C05	L2
7	infinite and finite slopes, factor of safety	C05	L2
8	use of Taylor's stability charts	C05	L2
9	Swedish slip circle method for C and C- ϕ (Method of slices) soils	C05	L3,L4
10	Fellineous method for critical slip circle	C05	L3,L4
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Compute lateral earth pressure distribution behind earth retaining structures	CO4	L4
2	Ability to estimate factor of safety against failure of earth slopes	CO5	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain what is meant by active and passive states of plastic equilibrium with sketch.	CO4	L2
2	Derive an expression for factor of safety for infinite slope	CO4	L2
3	What are the causes of failure slopes	CO4	L2
4	Explain with neat sketches i) Active earth pressure ii) Passive earth pressure iii) earth pressure at rest.	CO4	L2
5	Explain Culmann's graphical method for finding out the active earth pressure.	CO5	L3
6	Define Rebhann's graphical method of finding active pressure on a retaining wall.		L5
7	what are the assumption and limitations of Rankine and coulomb's earth pressure theories.	CO4	L2
8	Mention the different types of slopes and explain the various causes of slope failure.	CO5	L2
9	Explain method of slice to determine the factor of safety against failure of finite slope.	CO5	L2
10	Derive the equation for finite and Infinite Slopes.	CO5	L2
e	Experiences		
1			1
2			1
3			1

4		
5		

Module – 4

Title:	Bearing Capacity of Shallow Foundation	Appr Time:	13 Hrs
a	Course Outcomes	со	Bloom
-	At the end of the topic the student should be able to	_	Level
1	Evaluate bearing capacity of shallow foundation by Terzaghis and B.I.S method		
b	Course Schedule		
Class No	o Portion covered per hour	-	-
1	Types of foundations	CO6	L2
2	determination of bearing capacity by Terzaghi's	CO6	L3
3	determination of bearing capacity by BIS method	CO6	L3
4	Effect of water table	CO6	L2
5	Effect of eccentricity	CO6	L2
6	field methods	CO6	L2
7	plate load test	CO6	L2
8	SPT	CO6	L2
9	Proportioning of shallow foundations- isolated	CO6	L5
10	Proportioning of shallow foundations- combined footings	CO6	L5
с	Application Areas	-	-
1	Ability to determine bearing capacity of soil and achieve profiency in proportioning shallow isolated and combined footings for uniform bearing pressure	CO6	L5
d	Review Questions	-	-
1	Define ultimate and safe bearing capacity of soil.	CO6	L2
2	Give the Terzaghi's equation for bearing capacity of strip, square, circular and rectangular footing.	CO6	L2
3	Discuss the effect of ground water table on bearing capacity.	CO6	L2
4	Explain plate load test with neat sketches to determine bearing capacity soils.	CO6	L2
5	List the assumptions made in terzaghi's bearing capacity theory.	CO6	L2
6	What is standard penetration test? Explain.	CO6	L2
7	What are the corrections applied to observed N values.	CO6	L2
8	Discuss the proportioning of combined footing.	CO6	L2
e	Experiences		
1			
2			
3			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	Code	17CV53 Sem: VII Marks: 30 Time: 75	minute	S	
Cour	rse:	APPLIED GEOTECHNICAL ENGINEERING			
-	-	Note: Answer all questions, each carry equal marks. Module : 3, 4	Marks	СО	Level
1	а	Explain what is meant by active and passive states of plastic equilibrium with sketch.		CO5	L2
	b	An embankment is made of soil having C=25kN/m and φ =20 and unit weight γ =19kN/m. The slope is 1.5H: 1V and has 9m height. Determine the factor of safety along a slip circle passing through toe. The center of slip circle is located at Fellinious angles α =26 0 and β =35 0. Use method of slices and analyze.		CO5	L3,L4
2	а	Derive an expression for factor of safety for infinite slope	05	CO5	L2
	b	A retaining wall is 9.0m high , retains cohesion-less backfill. The top 3m of fill has unit weight γ =18kN/m 3 with ϕ = 32 0 . The rest has unit weight γ =22kN/m 3 with ϕ = 22 0 . Determine the active earth $~$ pressure on the wall and its position.		CO5	L3
3	а	Define i. Safe bearing capacity ii. Allowable bearing capacity	04	CO6	L2
	b	What will be the net safe bearing pressure of sand having ϕ =36 °, take effective unit weight of soil as 19kN/m ³ i. 1.2m wide strip footing ii. 1.2m wide square footing.	06	CO6	L3
	С	Write a note on how bearing capacity changes with respect to water table level.	05	CO6	L3
4	а	When there is need of combined footing, explain with sketches	05	CO6	L3
	b	Design a square footing to carry a safe load of 2400kN on a sandy soil at a depth of 1.5m below GL with factor of safety of 3. Given γ sat =21kN/m 3 with N c = 25, N q = 34 and N γ = 32. Permissible settlement is 40mm. water table may rise up to the base of the footing.		CO6	L4

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

		Model Assignment Questions			
Crs C			90 – 120 i	minutes	5
Cours	se: APPLIED	GEOTECHNICAL ENGINEERING Module : 3, 4			
Note:	Each student	to answer 2-3 assignments. Each assignment carries equal ma	rk.		
SNo	USN	Assignment Description	Marks	CO	Level
1	1KT15CV053	Explain Culmann's graphical method for finding out the active earth pressure.	e 5	CO4	L2
2	1KT16CV035	Define Rebhann's graphical method of finding active pressure on a retaining wall.	e 5	CO4	L2
3	1KT16CV020	what are the assumption and limitations of Ranking and coulomb's earth pressure theories.5	e 5	CO4	L2
4	1KT16CV026	Mention the different types of slopes and explain the variou causes of slope failure.	s 5	CO4	L2
5	1KT16CV028	Explain method of slice to determine the factor of safet against failure of finite slope.	y 5	CO5	L3
6	1KT16CV038	Derive the equation for finite and Infinite Slopes.	5	CO5	L5
7	1KT16CV039	Define ultimate and safe bearing capacity of soil.	5	CO4	L2
8	1KT16CV042	Give the Terzaghi's equation for bearing capacity of strip	o, 5	CO5	L2

		square, circular and rectangular footing.			
9		Discuss the effect of ground water table on bearing capacity.	5	CO5	L2
10	1KT16CV048	Explain plate load test with neat sketches to determine bearing capacity soils.	5	CO5	L2
11	1KT17CV007	List the assumptions made in terzaghi's bearing capacity theory.	5	CO6	L2
12	1KT17CV008	What is standard penetration test? Explain.	5	CO6	L2
13	1KT17CV010	· · · · ·	5	CO6	L2
14	1KT17CV012	Discuss the proportioning of combined footing.	5	CO6	L2
15	1KT17CV011	Write a note on standard penetration test and its corrections.	5	CO6	L2
16	1KT17CV013	Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of lm below the ground surface. Take Nq = 41.4 , N, = 42.2.	5	CO6	L4
17	1KT17CV015	Discuss effect of water table on bearing capacity of soil.	5	CO6	L2
18	1KT17CV017	A square footing placed at a depth of 1m is required to carry a load of 1000kN. Find the required size of footing given the following data : C = 10kN/m2, \mathcal{D} = 38°, y = 19kN/m3. For \mathcal{D} = 38°. Terzaghi's bearing capacity factors are N _c = 61.35, N2 = 48.93, N _y = 74.03. Assume water table is at base of footing.	5	CO6	L4
19	1KT17CV019	A circular footing rests on a pure clay with qu = 270 kN/m ² at a depth of 1.8m. Determine the diameter of the footing if it has to transmit a load of 720 kN. Assume the bulk unit weight of soil as 181(N/m3 and the factor of safety as 3.	5	CO6	L4
20	1KT17CV020	Explain Culmann's graphical method for finding out the active earth pressure.	5	CO4	L2
21	1KT17CV021	Define Rebhann's graphical method of finding active pressure on a retaining wall.	5	CO4	L2
22	1KT17CV023	what are the assumption and limitations of Rankine and coulomb's earth pressure theories.	5	CO4	L2
23	1KT17CV024	Mention the different types of slopes and explain the various causes of slope failure.	5	CO4	L2
24	1KT17CV025	Explain method of slice to determine the factor of safety against failure of finite slope.	5	CO5	L3
25	1KT17CV026	Derive the equation for finite and Infinite Slopes.	5	CO5	L5
26	1KT18CV400	Define ultimate and safe bearing capacity of soil.	5	CO4	L2
27		Give the Terzaghi's equation for bearing capacity of strip, square, circular and rectangular footing.	5	CO5	L2
28		Discuss the effect of ground water table on bearing capacity.	5	CO5	L2
20	1K118CV401	Discuss the cheet of ground watch table of bearing capacity.			
29		Explain plate load test with neat sketches to determine	5	CO5	L2
	1KT18CV402	Explain plate load test with neat sketches to determine bearing capacity soils. List the assumptions made in terzaghi's bearing capacity	5 5	CO5 CO6	L2 L2
29 30	1KT18CV402 1KT18CV403	Explain plate load test with neat sketches to determine bearing capacity soils. List the assumptions made in terzaghi's bearing capacity theory.	5	CO6	L2
29 30 31	1KT18CV402 1KT18CV403 1KT18CV422	Explain plate load test with neat sketches to determine bearing capacity soils. List the assumptions made in terzaghi's bearing capacity theory. What is standard penetration test? Explain.	5	CO6 CO6	L2 L2
29 30	1KT18CV402 1KT18CV403 1KT18CV422	Explain plate load test with neat sketches to determine bearing capacity soils. List the assumptions made in terzaghi's bearing capacity theory. What is standard penetration test? Explain.	5	CO6	L2

35 1KT18CV405 Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties:) Unit weight 38 6KV/m3 ii) Angle of internal friction 35'. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4. CO6 L4 36 1KT18CV405 Discuss effect of water table on bearing capacity of soil. 5 CO6 L2 37 1KT18CV406 A square footing placed at a depth of Im is required to carry a load of 1000kN. Find the required size of footing given the following data: C - 10kK/m2 , Ø - 38', y - 19kN/m3, For Ø - 38'. Terzagh's bearing capacity factors are N, - 61 35. N2 - 48.93. N, - 74.03. Assume worte table is a base of footing. CO6 L4 38 1KT18CV409 A circular footing rests on a pure clay with qu - 270 kN/m ² at a s18/tN/m3 and the factor of safety as 3. S CO6 L4 40 1KT16CV055 Explain Culmarnis graphical method of finding active pressure on a retaining wall. 5 CO4 L2 41 1KT16CV062 Define Rebharnis graphical method of safety as 3. 5 CO4 L2 42 1KT16CV076 What are the assumption and limitations of Rankine and 5 CO4 L2 43 1KT16CV072 Berblain method of slice to determine the factor of safety 3.<			ů			
37 1KT18CV408 A square footing placed at a depth of m is required to carry a load of 1000KN. Find the required size of footing given the following data: C - 10KN/m2. Ø - 38', y - 19kN/m3. For Ø - 38'. Terzaghi's bearing capacity factors are N, = 61.5, N2 - 48.93. N, - 74.03. Assume water table is at base of footing. 5 CO6 L4 38 1KT18CV409 A circular footing rests on a pure clay with qu - 270 KN/m ³ at a to transmit a load of 720 kN. Assume the bulk unit weight of soil as a 58.1/m3 and the factor of safety as 3. 5 CO4 L2 39 1KT16CV405 Explain Culmann's graphical method for finding out the active assume. 5 CO4 L2 40 1KT16CV408 Explain Culmann's graphical method of finding active pressure on a retaining wall. 5 CO4 L2 41 1KT16CV482 Mention the different types of slopes and explain the various causes of slope failure. 5 CO4 L2 42 1KT16CV082 Mention the different types of slopes. 5 CO4 L2 43 1KT16CV082 Derive the equation for finite and Infinite Slopes. 5 CO4 L2 44 1KT16CV088 Explain method of slice to determine the factor of safety size of a sand splain the various squares of slope failure. 5 CO5 L5 44	35	1KT18CV405	footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 ,	5	CO6	L4
37 1KT18CV408 A square footing placed at a depth of tm is required to carry alload of 1000kN. Find the required size of footing given the following data: C = 10kN/m2, <i>Ø</i> = 38', y = 1gkN/m3, For <i>Ø</i> = 38', y = 74,03. Assume vater table is at base of footing. 5 CO6 L4 38 1KT18CV409 A circular footing rests on a pure clay with qu = 270 kN/m² at a depth of 1.8m. Determine the diameter of the footing if thas to bransmit a load of 720 kN. Assume the bulk unit weight of soil as 131/M2 and ad of 720 kN. Assume the bulk unit weight of soil as 131/M2 m3 and the factor of safety as 3. 5 CO4 L2 40 1KT16CV402 Explain Culmann's graphical method for finding out the active as an etaining wall. 5 CO4 L2 41 1KT16CV482 Mention the different types of slopes and explain the various coulomb's earth pressure theories. 5 CO4 L2 42 1KT16CV482 Mention the different types of slopes and explain the various causes of slope failure. 5 CO4 L2 43 1KT16CV488 Explain method of slice to determine the factor of safety for slip, squares failure of finite slope. 5 CO4 L2 44 1KT16CV488 Explain method of slice to determine the factor of safety for slip, squares failure of finite slope. 5 CO5 L3 45 1KT16CV488 Define ultimate and safe	36	1KT18CV407	Discuss effect of water table on bearing capacity of soil.	5	CO6	L2
depth of 1.8m. Determine the diaméter of the footing if it has to transmit a load of 720 kN. Assume the bulk unit weight of soil as 181(N/m3 and the factor of safety as 3. 39 1KT16CV055 Explain Culmann's graphical method for finding out the active earth pressure. 5 CO4 L2 40 1KT16CV060 Define Rebhann's graphical method of finding active pressure 5 CO4 L2 41 1KT16CV077 what are the assumption and limitations of Rankine and coulomb's earth pressure theories. 5 CO4 L2 42 1KT16CV082 Mention the different types of slopes and explain the various causes of slope failure. 5 CO5 L3 43 1KT16CV084 Explain method of slice to determine the factor of safety against failure of finite slope. 5 CO5 L3 44 1KT16CV089 Define ultimate and safe bearing capacity of soil. 5 CO4 L2 45 1KT16CV089 Define ultimate and safe bearing capacity of soil. 5 CO4 L2 44 1KT16CV089 Define ultimate and safe bearing capacity of soil. 5 CO5 L2 45 1KT16CV089 Define ultimate and safe bearing capacity of soil. 5 CO5 L2 46	37		A square footing placed at a depth of 1m is required to carry a load of 1000kN. Find the required size of footing given the following data : C = 10kN/m2, \mathcal{O} = 38°, y = 19kN/m3. For \mathcal{O} = 38°. Terzaghi's bearing capacity factors are N _c = 61.35, N2 = 48.93, N _y = 74.03. Assume water table is at base of footing.	5		
earth pressure.construction401KT16CV060Define Rebhann's graphical method of finding active pressure on a retaining wall.5CO4L2411KT16CV077what are the assumption and limitations of Rankine and coulomb's earth pressure theories.5CO4L2421KT16CV082Mention the different types of slopes and explain the various causes of slope failure.5CO4L2431KT16CV088Explain method of slice to determine the factor of safety against failure of finite slope.5CO5L3441KT16CV089Derive the equation for finite and Infinite Slopes.5CO5L5451KT16CV029Derive the equation for bearing capacity of soil.5CO5L2461KT16CV020Give the Terzaghi's equation for bearing capacity of strip. square. circular and rectangular footing.5CO5L2481KT17CV028Discuss the effect of ground water table on bearing capacity. bearing capacity soils.5CO6L2491KT17CV031List the assumptions made in terzaghi's bearing capacity. bearing capacity soils.5CO6L2501KT17CV032What is standard penetration test? Explain. toting resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35'. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4, N. = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of s			depth of 1.8m. Determine the diameter of the footing if it has to transmit a load of 720 kN. Assume the bulk unit weight of soil as 181(N/m3 and the factor of safety as 3.			
41 1KT16CV077 what are the assumption and limitations of Rankine and coulomb's earth pressure theories. 5 CO4 L2 42 1KT16CV082 Mention the different types of slopes and explain the various causes of slope failure. 5 CO4 L2 43 1KT16CV088 Explain method of slice to determine the factor of safety against failure of finite slope. 5 CO5 L3 44 1KT16CV098 Derive the equation for finite and Infinite Slopes. 5 CO5 L5 44 1KT16CV098 Define ultimate and safe bearing capacity of soil. 5 CO4 L2 45 1KT16CV020 Give the Terzaghi's equation for bearing capacity of strip. square, circular and rectangular footing. 5 CO5 L2 46 1KT17CV028 Discuss the effect of ground water table on bearing capacity. 5 CO5 L2 47 1KT17CV032 List the assumptions made in terzaghi's bearing capacity. 5 CO6 L2 48 1KT17CV032 What is standard penetration test? Explain. 5 CO6 L2 50 1KT17CV033 What are the corrections applied to observed N values. 5 CO6 L2 54<			earth pressure.			
421KT16CV082Mention the different types of slopes and explain the various causes of slope failure.5CO4L2431KT16CV088Explain method of slice to determine the factor of safety against failure of finite slope.5CO5L3441KT16CV094Derive the equation for finite and Infinite Slopes.5CO5L5451KT16CV098Define ultimate and safe bearing capacity of soil.5CO4L2461KT16CV028Derive the equation for bearing capacity of strip. square, circular and rectangular footing.5CO5L2471KT17CV028Discuss the effect of ground water table on bearing capacity. bearing capacity soils.5CO5L2491KT17CV031List the assumptions made in terzaghi's bearing capacity theory.5CO6L2501KT17CV032What is standard penetration test? Explain. theory.5CO6L2511KT17CV033Writa a note on standard penetration test order sound surface of a sand deposit with the following properties: i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35'. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 , N. = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	40	1K116CV060		5	CO4	L2
431KT16CV088Explain method of slice to determine the factor of safety against failure of finite slope.5CO5L3441KT16CV094Derive the equation for finite and Infinite Slopes.5CO5L5451KT16CV098Define ultimate and safe bearing capacity of soil.5CO4L2461KT16CV028Define ultimate and rectangular footing.5CO5L2471KT17CV028Discuss the effect of ground water table on bearing capacity.5CO5L2481KT17CV029Explain plate load test with neat sketches to determine bearing capacity soils.5CO6L2491KT17CV032What is standard penetration test? Explain.5CO6L2501KT17CV032What are the corrections applied to observed N values.5CO6L2511KT17CV034Discuss the proportioning of combined footing.5CO6L2541KT17CV035Write a note on standard penetration test? Explain.5CO6L2541KT17CV036Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35'. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4. N, = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	41	1KT16CV077		5	CO4	L2
441KT16CV094Derive the equation for finite slope.5CO5L5451KT16CV098Define ultimate and safe bearing capacity of soil.5CO4L2461KT16CV102Give the Terzaghi's equation for bearing capacity of strip, square, circular and rectangular footing.5CO5L2471KT17CV028Discuss the effect of ground water table on bearing capacity.5CO5L2481KT17CV029Explain plate load test with neat sketches to determine bearing capacity soils.5CO6L2491KT17CV031List the assumptions made in terzaghi's bearing capacity5CO6L2501KT17CV032What is standard penetration test? Explain.5CO6L2511KT17CV033What are the corrections applied to observed N values.5CO6L2511KT17CV036Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Write a note on standard penetration test and deposit with the following properties :i) Unit weight 18.6 KN/m35CO6L2541KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2551KT17CV037Discus effect of water table on bearing capacity of soil.5CO6L2 <td>42</td> <td>1KT16CV082</td> <td></td> <td>5</td> <td>CO4</td> <td>L2</td>	42	1KT16CV082		5	CO4	L2
451KT16CV098Define ultimate and safe bearing capacity of soil.5CO4L2461KT16CV102Give the Terzaghi's equation for bearing capacity of strip. square, circular and rectangular footing.5CO5L2471KT17CV028Discuss the effect of ground water table on bearing capacity. bearing capacity soils.5CO5L2481KT17CV029Explain plate load test with neat sketches to determine bearing capacity soils.5CO6L2491KT17CV031List the assumptions made in terzaghi's bearing capacity theory.5CO6L2501KT17CV032What is standard penetration test? Explain. 55CO6L2511KT17CV034Discuss the proportioning of combined footing. 55CO6L2531KT17CV035Write a note on standard penetration test and its corrections. footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35'. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 , N, = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	43	1KT16CV088		5	CO5	L3
461KT16CV102Give the Terzaghi's equation for bearing capacity of strip, square, circular and rectangular footing.5CO5L2471KT17CV028Discuss the effect of ground water table on bearing capacity. bearing capacity soils.5CO5L2481KT17CV029Explain plate load test with neat sketches to determine bearing capacity soils.5CO6L2491KT17CV031List the assumptions made in terzaghi's bearing capacity theory.5CO6L2501KT17CV032What is standard penetration test? Explain.5CO6L2511KT17CV033What are the corrections applied to observed N values.5CO6L2521KT17CV034Discuss the proportioning of combined footing.5CO6L2531KT17CV035Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35'. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4, N, = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	44	1KT16CV094	Derive the equation for finite and Infinite Slopes.	5	CO5	L5
461KT16CV102Give the Terzaghi's equation for bearing capacity of strip, square, circular and rectangular footing.5CO5L2471KT17CV028Discuss the effect of ground water table on bearing capacity. bearing capacity soils.5CO5L2481KT17CV029Explain plate load test with neat sketches to determine bearing capacity soils.5CO6L2491KT17CV031List the assumptions made in terzaghi's bearing capacity theory.5CO6L2501KT17CV032What is standard penetration test? Explain.5CO6L2511KT17CV033What are the corrections applied to observed N values.5CO6L2521KT17CV034Discuss the proportioning of combined footing.5CO6L2531KT17CV035Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35'. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4, N, = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	45	1KT16CV098	Define ultimate and safe bearing capacity of soil.	5	CO4	L2
481KT17CV029Explain plate load test with neat sketches to determine bearing capacity soils.5CO5L2491KT17CV031List the assumptions made in terzaghi's bearing capacity theory.5CO6L2501KT17CV032What is standard penetration test? Explain.5CO6L2511KT17CV033What are the corrections applied to observed N values.5CO6L2521KT17CV034Discuss the proportioning of combined footing.5CO6L2531KT17CV035Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 , N, = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2			square, circular and rectangular footing.			L2
bearing capacity soils.Image: capacity soils.491KT17CV031List the assumptions made in terzaghi's bearing capacity theory.5CO6L2501KT17CV032What is standard penetration test? Explain.5CO6L2511KT17CV033What are the corrections applied to observed N values.5CO6L2521KT17CV034Discuss the proportioning of combined footing.5CO6L2531KT17CV035Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of lm below the ground surface. Take Nq = 41.4 , N, = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	47			5	-	L2
Image: 10 minipageImage: 10 minipageImage: 10 minipage501KT17CV032What is standard penetration test? Explain.5CO6L2511KT17CV033What are the corrections applied to observed N values.5CO6L2521KT17CV034Discuss the proportioning of combined footing.5CO6L2531KT17CV035Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties :5CO6L4i) Unit weight 18.6 KN/m3ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 , N, = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	48		bearing capacity soils.	5	CO5	L2
511KT17CV033What are the corrections applied to observed N values.5CO6L2521KT17CV034Discuss the proportioning of combined footing.5CO6L2531KT17CV035Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties :5CO6L4i) Unit weight 18.6 KN/m3ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 , N, = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	49		theory.	5	CO6	L2
521KT17CV034Discuss the proportioning of combined footing.5CO6L2531KT17CV035Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 , N, = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	50			5		L2
531KT17CV035Write a note on standard penetration test and its corrections.5CO6L2541KT17CV036Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of lm below the ground surface. Take Nq = 41.4 , N, = 42.2.5CO6L2551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	51			5		L2
541KT17CV036Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of lm below the ground surface. Take Nq = 41.4 , N, = 42.2.5CO6L4551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	52			5		L2
footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 , N, = 42.2.551KT17CV037Discuss effect of water table on bearing capacity of soil.5CO6L2	53	1KT17CV035	Write a note on standard penetration test and its corrections.	5	CO6	L2
	54		footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 , N, = 42.2.	5	CO6	L4
	55	1KT17CV037	Discuss effect of water table on bearing capacity of soil.	5	CO6	L2
	56			5	CO6	L4

		load of 1000kN. Find the required size of footing given the following data :			
		C = 10kN/m2, \emptyset = 38°, y = 19kN/m3. For \emptyset = 38°.			
		Terzaghi's bearing capacity factors are $N_{\rm c}$ = 61.35 , N2 = 48.93 , $N_{\rm y}$ = 74.03. Assume water table is at base of footing.			
57	1KT17CV040	A circular footing rests on a pure clay with qu = 270 kN/m ² at a depth of 1.8m. Determine the diameter of the footing if it has to transmit a load of 720 kN. Assume the bulk unit weight of soil as 181(N/m3 and the factor of safety as 3.	5	CO6	L4
58	1KT17CV041	Explain Culmann's graphical method for finding out the active earth pressure.	5	CO4	L2
59	1KT17CV042	Define Rebhann's graphical method of finding active pressure on a retaining wall.	5	CO4	L2
60	1KT17CV050	whatare the assumption and limitations of Rankine and coulomb's earth pressure theories.	5	CO4	L2
61	1KT17CV053	Mention the different types of slopes and explain the various causes of slope failure.	5	CO4	L2
62	1KT17CV055	Explain method of slice to determine the factor of safety against failure of finite slope.	5	CO5	L3
63	1KT18CV423	Derive the equation for finite and Infinite Slopes.	5	CO5	L5
64	1KT18CV412	Define ultimate and safe bearing capacity of soil.	5	CO4	L2
65	1KT18CV424	Give the Terzaghi's equation for bearing capacity of strip, square, circular and rectangular footing.	5	CO5	L2
66	1KT18CV415	Discuss the effect of ground water table on bearing capacity.	5	CO5	L2
67		Explain plate load test with neat sketches to determine bearing capacity soils.	5	CO5	L2
68		List the assumptions made in terzaghi's bearing capacity theory.	5	CO6	L2
69		What is standard penetration test? Explain.	5	CO6	L2
70		What are the corrections applied to observed N values.	5	CO6	L2
71		Discuss the proportioning of combined footing.	5	CO6	L2
72	1KT18CV411	Write a note on standard penetration test and its corrections.	5	CO6	L2
73	1KT18CV410	Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 , N, = 42.2.	5	CO6	L4
74	1KT18CV413	Discuss effect of water table on bearing capacity of soil.	5	CO6	L2
75	1KT18CV420	A square footing placed at a depth of 1m is required to carry a load of 1000kN. Find the required size of footing given the following data : C = 10kN/m2, \mathcal{O} = 38°, y = 19kN/m3. For \mathcal{O} = 38°. Terzaghi's bearing capacity factors are N _c = 61.35, N2 = 48.93, N _y = 74.03. Assume water table is at base of footing.	5	CO6	L4
76	1KT18CV425	A circular footing rests on a pure clay with qu = 270 kN/m ² at a depth of 1.8m. Determine the diameter of the footing if it has to transmit a load of 720 kN. Assume the bulk unit weight of soil as 181(N/m3 and the factor of safety as 3.	5	CO6	L4

D3. TEACHING PLAN - 3

Module – 5

Title:	Pile Foundation	Appr Time:	10 Hrs
а	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Analyse the capacity and efficiency of single and group of piles in cohesive and cohesion-less soil		
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Types and classification of piles	C07	L2
2	single loaded pile capacity in cohesion-less soils by static formula	CO7	L2
3	single loaded pile capacity in cohesive soils by static formula	CO7	L2
4	efficiency of file group	CO7	L4
5	group capacity of piles in cohesion-less soils	CO7	L3
6	group capacity of piles in cohesive soils	CO7	L3
7	negative skin friction	CO7	L2
8	pile load tests	C07	L2
9	Settlement of piles	C07	L2
10	under reamed piles (only introductory concepts – no derivation)	C07	L2
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
	Capability of estimating load carrying capacity of single and group of piles	C07	L4
d	Review Questions	_	-
	The attainment of the module learning assessed through following questions	-	-
1	Classify the pile foundation and explain briefly.	CO7	L2
2	Explain Static formula for the design of piles.	CO7	L2
3	With a neat sketch, explain undereamed piles.	CO7	L2
4	With a neat sketch, Explain Pile load test.	CO7	L2
5	What is meant by Efficiency of piles. Explain felds rule.	CO7	L2
6	Explain Settlement of piles in cohesive and cohesionless soil.	CO7	L2
7	Write a note on classification of piles	CO7	L2
8	Explain negative skin friction in pile foundation	CO7	L2
9	Design a friction pile group to carry a load of 3000 kn including the weight of		L4
	the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain		
	by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The		
	clay may be assumed to be of normal sensitivity and normally loaded with		
40	liquid limit 60%. A factor of safety of 3 is required against shear failure.	<u> </u>	
10	A group of nine piles with three piles in a row was driven into soft clay		L4
	extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion $C = 35$ kN/m2. If the piles		
	were spaced at 90 cm c/c, compare the bearing load on the pile group on the		
	basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the		

11	Explain the factors influencing the selection of depth of foundation.	C07	L4
	A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.		L4
е	Experiences	-	-
1			
2			
3			
4			
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code	:17CV53	Sem:	VII	Marks:	30	Time:	75 minute	S	
Cour	rse:	APPLIED	GEOTECHN	IICAL ENGI	NEERING					
-	-				ch carry equa	l marks.	Module : 5	Marks	со	Level
1	a	Write a n	ote on clas	sification of	piles			04	CO7	L2
	b	What is r	neant by ef	ficiency of p	pile group, ex	olain Felo	d's rule.	05	CO7	L2
	С	extending of the pile If the pile pile group	from grou es were 30c s were spa o on the bas bearing at t	nd level to orm and 10m liced at 90c sis of shear	a great dept n respectively m c/c, comp failure criterio	h. The di 7. The col 0are the 0n for a f	driven into soft c ameter and lengt nesion C = 35kN/r bearing load on t actor of safety of a or shear mobilizat	h s n2. .he 2.5.	CO7	L4
2	а	Explain s	tatic formul	a for the de	esign of piles			04	CO7	L2
	b		ypical arra of pile, bulł			ned pile	with proportion	of 06	C07	L2
	С	Write a n	ote on pile	load test				05	CO7	L2
3	а	Classify th	ne various t	ype of Piles	s based on ma	aterial an	d function.	08	CO7	L2
	b	Explain ne	egative skir	friction in	pile foundatic	n		07	CO7	L2
4	а	Explain de	eterminatio	n of the pile	e load capaci	ty in deta	ail.	07	CO7	L2
	b	weight of 20m, und clay is 70 and norn	the pile ca erlain by rc kN/m2. Tl	p at a site v ock. Average ne clay ma d with liqu	where the soil e unconfined y be assume	is unifor compres d to be	00 kn including t m clay to a depth ssive strength of t of normal sensitiv or of safety of 3	ı of :he vity	CO7	L4

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs C	rs Code: 17CV53 Sem: VII Marks: 5		5	Time:	90 – 120 minutes		S				
Cours	Course: APPLIED GEOTECHNICAL ENGINEERING Module : 5										
Note:	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.										
SNo	USN			Assigr	nment Desc	ription		Marks	СО	Level	
1	1KT15CV053	С	lassify the p	ile foundatio	on and expla	ain briefly.		5	CO7	L2	
			valain Ctatio	formula for	the decign	ofpiloc		Г	CO7	12	
2	1KT16CV038 1KT16CV020							5	007		

4	1KT16CV026	With a neat sketch, Explain Pile load test.	5	C07	L2
5	1KT16CV028	What is meant by Efficiency of piles. Explain felds rule.	5	CO7	L2
6	1KT16CV038	Explain Settlement of piles in cohesive and cohesionless soil.	5	CO7	L2
7	1KT16CV039	Write a note on classification of piles	5	CO7	L2
8		Explain negative skin friction in pile foundation	5	CO7	L2
9		Design a friction pile group to carry a load of 3000 kn	5	C07	L4
		including the weight of the pile cap at a site where the soil is	-		
		uniform clay to a depth of 20m, underlain by rock. Average			
		unconfined compressive strength of the clay is 70 kN/m2. The			
		clay may be assumed to be of normal sensitivity and normally			
		loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure.			
10	1KT16CV048	A group of nine piles with three piles in a row was driven into	5	C07	L4
		soft clay extending from ground level to a great depth. The			
		diameter and length s of the piles were 30cm and 10m			
		respectively. The cohesion C = 35 kN/m2. If the piles were			
		spaced at 90cm c/c, compare the bearing load on the pile			
		group on the basis of shear failure criterion for a factor of			
		safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6			
		for shear mobilization around each pile.	_	<u> </u>	1 .
11	1KT17CV007	Explain the factors influencing the selection of depth of foundation.	5	CO7	L4
12	1KT17CV008	A group of nine piles with three piles in a row was driven into	5	C07	L4
	-	soft clay extending from ground level to a great depth. The	2		
		diameter and length s of the piles were 30cm and 10m			
		respectively. The cohesion C = 35kN/m2. If the piles were			
		spaced at 90cm c/c, compare the bearing load on the pile			
		group on the basis of shear failure criterion for a factor of			
		safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6			
		for shear mobilization around each pile.			
13	1KT17CV010	Classify the pile foundation and explain briefly.	5	CO7	L2
14	1KT17CV012	Explain Static formula for the design of piles.	5	CO7	L2
15	1KT17CV011	With a neat sketch, explain undereamed piles.	5	CO7	L2
16	1KT17CV013	With a neat sketch, Explain Pile load test.	5	CO7	L2
17	1KT17CV015	What is meant by Efficiency of piles. Explain felds rule.	5	CO7	L2
18	1KT17CV017	Explain Settlement of piles in cohesive and cohesionless soil.	5	CO7	L2
19	1KT17CV019	Write a note on classification of piles	5	CO7	L2
20		Explain negative skin friction in pile foundation	5	C07	L2
21	1KT17CV021		5	C07	L4
		including the weight of the pile cap at a site where the soil is			
		uniform clay to a depth of 20m, underlain by rock. Average			
		unconfined compressive strength of the clay is 70 kN/m2. The			
		clay may be assumed to be of normal sensitivity and normally			
		loaded with liquid limit 60%. A factor of safety of 3 is required			
		against shear failure.			
22	1KT17CV023	A group of nine piles with three piles in a row was driven into	5	CO7	L4
		soft clay extending from ground level to a great depth. The			
		diameter and length s of the piles were 30cm and 10m			
		respectively. The cohesion $C = 35$ kN/m2. If the piles were			
		spaced at 90cm c/c, compare the bearing load on the pile			
		group on the basis of shear failure criterion for a factor of			
		safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6			
22	1KT17CV024	for shear mobilization around each pile. Explain the factors influencing the selection of depth of	E	CO7	1 1
23	11/1/0024	foundation.	5		L4
24	1KT17CV025	A group of nine piles with three piles in a row was driven into	5	C07	L4
		soft clay extending from ground level to a great depth. The	-		-
		diameter and length s of the piles were 30cm and 10m			
		respectively. The cohesion C = 35kN/m2. If the piles were			
		spaced at 90cm c/c, compare the bearing load on the pile			

261KT18CV400Explain Static formula for the design of piles.50271KT18CV421With a neat sketch, explain undereamed piles.50281KT18CV401With a neat sketch, Explain Pile load test.50291KT18CV402What is meant by Efficiency of piles. Explain felds rule.50301KT18CV403Explain Settlement of piles in cohesive and cohesionless soil.50311KT18CV422Write a note on classification of piles50321KT18CV404Explain negative skin friction in pile foundation50331KT17CV412Design a friction pile group to carry a load of 3000 kn50	CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li	L2 L2 L2
for shear mobilization around each pile.251KT17CV026261KT18CV400Explain Static formula for the design of piles.271KT18CV421With a neat sketch, explain undereamed piles.281KT18CV401With a neat sketch, Explain Pile load test.291KT18CV402What is meant by Efficiency of piles. Explain felds rule.301KT18CV403311KT18CV404321KT18CV404331KT18CV404341KT18CV404351KT18CV404361KT18CV404371KT18CV404381KT17CV412391KT17CV412301KT17CV412311KT17CV412321KT17CV412331KT17CV412341KT17CV412351KT17CV412361KT17CV412371KT17CV412381KT17CV412391KT17CV412301KT17CV412311KT17CV412321KT17CV412331KT17CV412341KT17CV412351KT17CV412351KT17CV412361KT17CV412371KT17CV412381KT17CV412391KT17CV412301KT17CV412311KT17CV412321KT17CV412331KT17CV412341KT17CV412351KT17CV412351KT17CV412361KT17CV412	CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li	L2
251KT17CV026Classify the pile foundation and explain briefly.50261KT18CV400Explain Static formula for the design of piles.50271KT18CV421With a neat sketch, explain undereamed piles.50281KT18CV401With a neat sketch, Explain Pile load test.50291KT18CV402What is meant by Efficiency of piles. Explain felds rule.50301KT18CV403Explain Settlement of piles in cohesive and cohesionless soil.50311KT18CV422Write a note on classification of piles50321KT18CV404Explain negative skin friction in pile foundation50331KT17CV412Design a friction pile group to carry a load of 3000 kn50	CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li	L2
261KT18CV400Explain Static formula for the design of piles.50271KT18CV421With a neat sketch, explain undereamed piles.50281KT18CV401With a neat sketch, Explain Pile load test.50291KT18CV402What is meant by Efficiency of piles. Explain felds rule.50301KT18CV403Explain Settlement of piles in cohesive and cohesionless soil.50311KT18CV422Write a note on classification of piles50321KT18CV404Explain negative skin friction in pile foundation50331KT17CV412Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is50	CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li CO7 Li	L2
271KT18CV421With a neat sketch, explain undereamed piles.50281KT18CV401With a neat sketch, Explain Pile load test.50291KT18CV402What is meant by Efficiency of piles. Explain felds rule.50301KT18CV403Explain Settlement of piles in cohesive and cohesionless soil.50311KT18CV422Write a note on classification of piles50321KT18CV404Explain negative skin friction in pile foundation50331KT17CV412Design a friction pile group to carry a load of 3000 kn50	CO7 Li CO7 Li CO7 Li CO7 Li	
281KT18CV401With a neat sketch, Explain Pile load test.50291KT18CV402What is meant by Efficiency of piles. Explain felds rule.50301KT18CV403Explain Settlement of piles in cohesive and cohesionless soil.50311KT18CV422Write a note on classification of piles50321KT18CV404Explain negative skin friction in pile foundation50331KT17CV412Design a friction pile group to carry a load of 3000 kn50	CO7 Li CO7 Li CO7 Li	L2
291KT18CV402What is meant by Efficiency of piles. Explain felds rule.50301KT18CV403Explain Settlement of piles in cohesive and cohesionless soil.50311KT18CV422Write a note on classification of piles50321KT18CV404Explain negative skin friction in pile foundation50331KT17CV412Design a friction pile group to carry a load of 3000 kn50331KT17CV412Design a friction pile group to carry a load of 3000 kn50	CO7 La CO7 La	
301KT18CV403Explain Settlement of piles in cohesive and cohesionless soil.50311KT18CV422Write a note on classification of piles50321KT18CV404Explain negative skin friction in pile foundation50331KT17CV412Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is50	CO7 La	L2
311KT18CV422Write a note on classification of piles50321KT18CV404Explain negative skin friction in pile foundation50331KT17CV412Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is5		L2
321KT18CV404Explain negative skin friction in pile foundation50331KT17CV412Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is50		L2
331KT17CV412Design a friction pile group to carry a load of 3000 kn50including the weight of the pile cap at a site where the soil is50		L2
including the weight of the pile cap at a site where the soil is		L2
	CO7 L	L4
uniform clay to a depth of 20m, underlain by rock. Average		
unconfined compressive strength of the clay is 70 kN/m2. The		
clay may be assumed to be of normal sensitivity and normally		
loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure.		
	CO7 L	L4
soft clay extending from ground level to a great depth. The		-4
diameter and length s of the piles were 30cm and 10m		
respectively. The cohesion $C = 35$ kN/m2. If the piles were		
spaced at 90cm c/c, compare the bearing load on the pile		
group on the basis of shear failure criterion for a factor of		
safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6		
for shear mobilization around each pile.		
	CO7 L	L4
foundation.		
	CO7 L	L4
soft clay extending from ground level to a great depth. The		
diameter and length s of the piles were 30cm and 10m		
respectively. The cohesion $C = 35 \text{kN/m2}$. If the piles were		
spaced at 90cm c/c, compare the bearing load on the pile		
group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6		
for shear mobilization around each pile.		
	CO7 La	L2
		L2
		L2
		L2
	-	L2
		L2
	-	L2
		L2
		 L4
including the weight of the pile cap at a site where the soil is	, _	•
uniform clay to a depth of 20m, underlain by rock. Average		
unconfined compressive strength of the clay is 70 kN/m2. The		
clay may be assumed to be of normal sensitivity and normally		
loaded with liquid limit 60%. A factor of safety of 3 is required		
against shear failure.		
	CO7 L	L4
soft clay extending from ground level to a great depth. The		
diameter and length s of the piles were 30cm and 10m		
respectively. The cohesion C = 35 kN/m2. If the piles were		
respectively. The cohesion $C = 35kN/m2$. If the piles were spaced at 90cm c/c, compare the bearing load on the pile		
respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of		
respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6		
respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.	C07 L	L4

		foundation.			
48		soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.	5	CO7	L4
49	1KT17CV031	Classify the pile foundation and explain briefly.	5	CO7	L2
50	1KT17CV032	Explain Static formula for the design of piles.	5	CO7	L2
51	1KT17CV033	With a neat sketch, explain undereamed piles.	5	C07	L2
52	1KT17CV034	With a neat sketch, Explain Pile load test.	5	CO7	L2
53		What is meant by Efficiency of piles. Explain felds rule.	5	C07	L2
54	1KT17CV036	Explain Settlement of piles in cohesive and cohesionless soil.	5	CO7	L2
55	1KT17CV037	Write a note on classification of piles	5	CO7	L2
56	1KT17CV038	Explain negative skin friction in pile foundation	5	CO7	L2
57	1KT17CV040	Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure.	5	CO7	L4
58	1KT17CV041	A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.	5	CO7	L4
59	1KT17CV042	Explain the factors influencing the selection of depth of foundation.	5	CO7	L4
60	1KT17CV050	A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.	5	CO7	L4
61	1KT17CV053	Classify the pile foundation and explain briefly.	5	CO7	L2
62		Explain Static formula for the design of piles.	5	C07	 L2
63		With a neat sketch, explain undereamed piles.	5	C07	 L2
64	1KT18CV412		5	C07	L2
65	1KT18CV424		5	CO7	 L2
66	1KT18CV415	Explain Settlement of piles in cohesive and cohesionless soil.	5	C07	 L2
67	1KT18CV414	Write a note on classification of piles	5	CO7	L2
68		Explain negative skin friction in pile foundation	5	CO7	L2
69	1KT18CV417	Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure.	5	CO7	L4
70	1KT18CV418	A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m	5	CO7	L4

		respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.			
71	1KT18CV419	Explain the factors influencing the selection of depth of foundation.	5	CO7	L4
72		A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.	-	CO7	L4
73	1KT18CV410	With a neat sketch, Explain Pile load test.	5	CO7	L2
74		What is meant by Efficiency of piles. Explain felds rule.	5	CO7	L2
75		Explain Settlement of piles in cohesive and cohesionless soil.	5	CO7	L2
76	1KT18CV425	Write a note on classification of piles	5	CO7	L2

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	APPLIED GEOTECHNICAL ENGINEERING Month ,	/ Year	May //	2018
	ode:	17CV53 Sem: VII Marks: 80 Time:		180 m	
	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Level
ule					
1	а	Discuss about the importance of sub — soil exploration program.	04	CO1	L2
	b	Explain the method of seismic refraction.	06	CO1	L2
	С	What are the methods available for dewatering? Explain any one method.	06	CO1	L2
		OR			<u> </u>
-		Explain the wash boring method, with the help of a neat sketch.	08	CO1	L2
		Establish the location of ground water in a clayey strata, water in bore was bailed out to a depth of 10.67m below ground surface and rise of water recorded at 24 hour interval. h1 = 64.0cm , h2 = 57.9cm and h3 = 51.8cm.	-	CO1	L3
2		Derive the expressions for vertical stress and shear stress by using Boussinesq's theory. Also compare this theory with Westergaard's theory.	06	C02	L2
		Write a note on pressure distribution diagrams.	04	C02	L2
	С	A load of 1000KN acts as a point load at the surface of a soil mass Estimate the stress at a point 3m below and 4m away from the point of action of the load of Boussinesq's formula. Compare the value with the result from Westergaard's theory.	-	C02	L3
		OR			
-		Explain with sketches various types of settlements. Comment on the sustainability of these types of settlements and functional utility of the structure.		CO3	L2
		A soft clay layer is 5m thick and lies under newly constructed building The effective pressure due to overlying strata is 300kN/m ² and new construction increased the overburden by 120kN/m ² . If liquid limit is 80%, natural water content of the clay layer is 43% and G=2.70. Dry density of the clay is 18kN/m ³ . Compute the settlement.	6	CO3	L3
3	а	Define At rest, Active and Passive Earth pressures.	04	CO4	L2
		Explain Rankine's theory for calculating Active pressure in cohesion less soils for no surcharge.	05	CO4	L2
	С	With neat sketch, explain Rebhann's graphical method of finding active earth pressure on a retaining wall	07	CO4	L4
		OR			
-	а	Explain the causes for a slope failure and list the types of slope failures.	05	CO5	L2
	b	Explain Swedish method of slices of stability analysis of slopes.	05	CO5	L2

	С	c. A 5m deep canal has side slopes of 1:1. The properties of soil are Cu =	06	CO5	L4
		20kN/m2, \emptyset = 10°, e = 0.8 and G = 2.8. If Taylor's stability number is			
		0.108, determine the factor of safety with respect to cohesion when the			
		canal runs full. Also fmd the factor of safety in case of sudden draw down,			
		if the Taylor's stability number for this condition is 0.137.			
4	а	Define : i) Ultimate bearing capacity ii) Safe bearing capacity.	04	CO6	L2
	b	Discuss effect of water table on bearing capacity of soil.	06	CO6	L2
	С	A square footing placed at a depth of 1m is required to carry a load of	06	CO6	L4
		1000kN. Find the required size of footing given the following data:			
		C = 10kN/m2 , \mathcal{A} = 38° , y = 19kN/m3. For \mathcal{A} = 38°. Terzaghi's			
		bearing capacity factors are N_{c} = 61.35 , N2 = 48.93 , N_{y} = 74.03. Assume			
		water table is at base of footing.			
		OR			
-	a	Discuss the proportioning of combined footings.	04	CO6	L5
	b	Explain the following :	06	CO6	L2
		i) Corrections to SPT 'N' value.			
		ii) Use of plate load test results to calculate bearing capacity of soils.			
	С	A circular footing rests on a pure clay with $qu = 270 \text{ kN/m}^2$ at a depth of	06	CO6	L4
		1.8m. Determine the diameter of the footing if it has to transmit a load of			
		720 kN. Assume the bulk unit weight of soil as $181(N/m_3)$ and the factor of safety as 3.			
5	а	Mention the situations where pile foundation is necessary and explain the	08	CO7	L2
	0.	classification of piles.		,	
	b	Design a friction pile group to carry a load of 3000 kn including the	08	CO7	L4
		weight of the pile cap at a site where the soil is uniform clay to a depth of			
		20m, underlain by rock. Average unconfined compressive strength of the			
		clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity			
		and normally loaded with liquid limit 60%. A factor of safety of 3 is			
		required against shear failure.			
		OR			
-	a	Explain determination of the pile load capacity in detail.	05	C07	L2
	b	Explain the factors influencing the selection of depth of foundation.	05	C07	L2
	С	A group of nine piles with three piles in a row was driven into soft clay	06	CO7	L4
		extending from ground level to a great depth. The diameter and length s			
		of the piles were 30cm and 10m respectively. The cohesion C = 35 kN/m2.			
		If the piles were spaced at 90cm c/c, compare the bearing load on the			
		pile group on the basis of shear failure criterion for a factor of safety of 2.5.			
		Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization			
		around each pile.			

2. SEE Important Questions

Cours	se:	APPLIED GEOTECHNICAL ENGINEERING Month	/ Year	May /	2018
Crs C	ode:	17CV53 Sem: 7 Marks: 80 Time:		180 m	inutes
	Note Answer all FIVE full questions. All questions carry equal marks.				
Mod	Qno.	Important Question	Marks	со	Year
ule					
1	1	What is subsurface exploration? What are the objectives of soi	l 06	CO1	2015
		exploration?			
	2	Explain the method of seismic refraction.	07	CO1	2015
	3	What are the methods available for dewatering?explain any one method	07	CO1	2015
	4	Explain briefly stabilization of bore holes.	06	CO1	2016
	5	Estimate the position of the ground water table from the following data	a 08	CO1	2017
		obtained from the field. Depth upto which water is boiled out is 30m			
		Raise in water levels : on first day 2.2m, second day 1.8m and third day	/		
		1.5m.			

		COURSE PLAN - CAY 2019-20			
	6	A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom of the borehole to a distance of 580mm with length of sample recorded being 520mm. find the recovery ratio.		CO1	2017
2	1	Write a note on pressure distribution diagrams.	06	CO2	2015
2	2	Derive the expressions for vertical stress and shear stress by using	00	CO2	2015
		Boussinesq's theory. Also compare this theory with Westergaard's theory			
	3	A load of 1000KN acts as a point load at the surface of a soil mass. Estimate the stress at a point 3m below and 4m away from the point of action of the load of Boussinesq's formula. Compare the value with the result from Westergaard's theory	06	CO2	2015
	4	Write a note on settlement of footings.	08	CO3	2016
	5	A saturated clay 8m thick underlies a proposed new building. The existing overburden pressure at the centre of clay layer is 300KPa and load due to a new building increase the pressure by 200KPa. The liquid limit of the soil is 75%. Water content of soil is 50%. GS $-$ 2.7. Estimate consolidation settlement.	08	CO3	2016
	6	Discuss the proportion of isolated footing.	06	CO3	2016
	7	Explain construction and uses of Newmarks chart.	06	CO2	2016
3	1	Define At rest, Active and Passive Earth pressures.	06	CO4	2015
	2	Explain Rankine's theory for calculating Active pressure in cohesion less soils for no surcharge.	06	CO4	2015
	3	A soft clay layer is 5m thick and lies under newly constructed building. The effective pressure due to overlying strata is 300kN/m and new construction increased the overburden by 120kN/m.If liquid limit is 80%, natural water content of the clay layer is 43% and G=2.70. Dry density of the clay is 18kN/m3.Compute the settlement.	08	CO4	2016
	4	What are the causes for failure of slopes?	06	CO5	2016
	5	Discuss the Swedish method of slices for a cohesive frictional soil.	08	CO5	2017
	6	An embankment is inclines at an angle of 35° and its height is 15m. the angle of shearing resistance is 15° and the cohesion intercept is 200KN/m2. The unit weight of soil is 18.0KN/m3. If Taylor's stability number is 0.06, find the factor of safety with respect to cohesion.	06	CO5	2017
4	1	Define safe bearing capacity, safe bearing pressure and allowable bearing pressure.	06	CO6	2015
	2	Write a note on standard penetration test and its corrections.	08	CO6	2015
	3	Calculate the ultimate bearing capacity of a 2m wide square footing resting on the ground surface of a sand deposit with the following properties : i) Unit weight 18.6 KN/m3 ii) Angle of internal friction 35°. Also calculate UBC of same footing when it is placed at depth of Im below the ground surface. Take Nq = 41.4 , N, = 42.2.	06	CO6	2015
	4	Discuss effect of water table on bearing capacity of soil.	06	CO6	2016
	5	A square footing placed at a depth of 1m is required to carry a load of 1000kN. Find the required size of footing given the following data : C = 10kN/m2, \mathcal{D} = 38°, y = 19kN/m3. For \mathcal{D} = 38°. Terzaghi's bearing capacity factors are N _c = 61.35, N2 = 48.93, N _y = 74.03. Assume water table is at base of footing.	08	CO6	2017
	6	A circular footing rests on a pure clay with qu = 270 kN/m ² at a depth of 1.8m. Determine the diameter of the footing if it has to transmit a load of 720 kN. Assume the bulk unit weight of soil as 181(N/m3 and the factor of safety as 3.	08	CO6	2017
5	1	Explain the factors affecting the choice of foundation.	06	CO7	2015
	2	Write a note on classification of pile foundations.	08	CO7	2015
	3	Explain negative skin friction in pile foundation	06	CO7	206
	4	Explain determination of the pile load capacity in detail.	06	CO7	2016
1	_				

	of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure.		
6	A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.	CO7	2017

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

	Iable 1: ILPA – Example Course							
Мо	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment	
dul	(Split module content into 2 parts which have	Teachin	Learning	Bloo	Action	on	Methods to	
e-	similar concepts)	g Hours		ms'	Verbs for		Measure	
#			for	Level	Learning		Learning	
			Content			Learning		
Α	В	С	D	Ε	F	G	Н	
	Objectives and Importance, Stages and		1	L2	Understa			
	Methods of exploration- Test pits, Borings,				nd		TEST/CIA	
	Geophysical methods, stabilization of							
	boreholes, Sampling techniques,							
	Undisturbed, disturbed and representative							
	samples, Geophysical exploration and Bore							
	hole log. Drainage and Dewatering methods							
	estimation of depth of GWT (Hvorslev's method).							
	Introduction, Boussinesq's and Westergaard's	10	2	L3	Apply	Lecture		
	theory - concentrated load, circular and		2	LJ	Apply	Lecture	TEST/CIA	
	rectangular load, equivalent point load						I LST/CIA	
	method, pressure distribution diagrams and							
	contact pressure, Newmark's chart.							
	Foundation Settlement - Approximate							
	method for stress distribution on a horizontal							
	plane, Types of settlements and importance,							
	Computation of immediate and consolidation							
	settlement.							
3	Active, Passive and earth pressure at rest,	10	2	L3	Apply	Lecture	SLIP	
	Rankine's theory for cohesionless and						TEST/CIA	
	cohesive soils, Coulomb's theory, Rebhann's							
	and Culmann's graphical construction.							
	Assumptions, infinite and finite slopes, factor							
	of safety, use of Taylor's stability charts,							
	Swedish slip circle method for C and C- ϕ							
	(Method of slices) soils, Fellineous method for							
	critical slip circle			1 -	A . 1	1		
	Types of foundations, determination of		2	L3	Apply	Lecture		
	bearing capacity by Terzaghi's and BIS						TEST/CIA	
	method (IS: 6403), Effect of water table and							
	eccentricity, field methods - plate load test and SPT.							
	Proportioning of shallow foundations- isolated							
	and combined footings (only two columns)							
	Types of foundations, determination of	10	2	L3	Apply	Lecture	SLIP	
5	rypes of touridations, actorrhination of	10	<u> </u>	_ _	, where	Lecture		

bearing capacity by Terzaghi's and BIS		TEST/CIA
method (IS: 6403), Effect of water table and		
eccentricity, field methods - plate load test		
and SPT.		
Proportioning of shallow foundations- isolated		
and combined footings (only two columns)		

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

	Table 2: Concept to Outcome – Example Course								
Mo dul e-	Learning or Outcome from study of	Identified Concepts from	Final Concept	Concept Justification (What all Learning	CO Components (1.Action Verb, 2.Knowledge,	Course Outcome			
#	the Content or Syllabus	Content		Happened from the study of Content / Syllabus. A short word for learning or outcome)	3.Condition / Methodology, 4.Benchmark)	Student Should be able to			
A	1	J	K	L	М	N			
	able to find	Characteri sation of soil		Characterisation of soil	Understand	Students are able to find the properties of soil by exploration of soil for construction of structures			
	able to	Analysis of stress in soil		Analysis of stress in soil	Apply	Students are able to analyse the distribution of stress in soil under loading			
	able to analyse the settlement of foundation under loading in cohesive and cohesion-less soil	foundatio n settlemen t	Stress in S	Analysis of foundation settlement	Apply	Students are able to analyse the settlement of foundation under loading in cohesive and cohe			
	able to analyse			Analysis of pressure in soil	Apply	Students are able to analyse lateral earth pressure in soil at rest			
3	Students are	analysis	Stability of Slopes	Stability analysis	Apply	Students are able to analyse the factor of safety against failure of earth slope			

	safety against failure of earth slope				
4	evaluate	ion of bearing capacity	U U	Computation of bearing capacity	 Students are able to evaluate bearing capacity of shallow foundation by Terzaghis and B.I.S method
5	Students are able to analyse the capacity and efficiency of single and group of piles in cohesive and cohesion-less soil	ning of pile foundatio n		Strengthening of pile foundation	students are able to analyse the capacity and efficiency of single and group of piles in cohesive and cohesion-less soil